Palladium-mediated total synthesis of 2-styrylbenzoic acids: a general route to 2-azachrysenes ${ }^{\dagger}$

Carme Pampín, Juan C. Estévez, Luis Castedo and Ramón J. Estévez*
Departamento de Química Orgánica and Unidade Asociada (C.S.I.C.), Universidade de Santiago, 15782 Santiago de Compostela, Spain

Received 6 March 2002; accepted 10 April 2002

Abstract

We describe a new total synthesis of 2-styrylbenzoic acids by Heck coupling of methyl o-iodobenzoates to styrenes. Additionally, in the first general synthesis of naphtho[2,1-f]isoquinolines, these acids were transformed into phenanthrenoic acids and thence into the target compounds by a six-step sequence including a Bischler-Napieralski cyclization. © 2002 Elsevier Science Ltd. All rights reserved.

Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants produced in the combustion of organic matter. ${ }^{1,2}$ Some PAHs, such as chrysene (9a), are potent carcinogens, possibly because their rigid planar embedded 2-phenylnaphthalene subunit may facilitate interaction of their diol epoxide derivatives with DNA. ${ }^{3,4}$ It has been suggested that structural modifications of PAHs may afford antineoplastic compounds. This is supported, for example, by the powerful anticancer activity of benzo $[c]$ phenanthridines (9 , $\mathrm{Y}=\mathrm{CH}, \mathrm{Z}=\mathrm{N}-\mathrm{Me}$), such as nitidine and fagaronine, cases in which this activity has been attributed to perturbation of the charge distribution in the tetracyclic system of 9 a by the introduction of a nitrogen atom. ${ }^{5}$ The introduction of alkoxy substituents at strategic positions may also interfere with the processes involved in the carcinogenic activity of $\mathbf{9 a}$. Although 2-azachrysenes $(9, Y=N, Z=C H)$ have a structural relationship to chrysene that is similar to that of benzo $[c]$ phenanthridines, and therefore, like the latter, might show antineoplastic activity, the synthesis of these compounds has been almost completely overlooked, ${ }^{6}$ and investigation of their properties ${ }^{7}$ has practically been limited to studies on pollution by 2-azachrysene (9d). We report here a new, simple, efficient synthetic approach to 2-azachrysenes, starting

[^0]from o-styrylbenzoic acids (4) and involving sequential construction of C and A rings of their tetracyclic framework.

Heck coupling ${ }^{8}$ of methyl o-iodobenzoate $\mathbf{2 a}{ }^{9}$ to styrene afforded the E isomer of o-styrylbenzoic acid (4a), together with a small amount of the corresponding α-coupling product 3a (global yield $89 \% ; \alpha / \beta$ ratio $1: 17$) (Scheme 1). Subsequent photocyclization ${ }^{10}$ of $\mathbf{4 a}$ in 95:5 ether-dichloromethane containing 1 equiv. of iodine gave the phenanthrene ring system of the desired phenanthrenoic acid ester 5a, ${ }^{11}$ and the heterocyclic ring of 2-azachrysene was then added in five steps ${ }^{12}$ as follows. Reduction of $\mathbf{5 a}$ with LiAlH_{4}, followed by oxidation of the resulting phenanthrenylmethyl alcohol with MnO_{2} afforded phenanthrene aldehyde $\mathbf{5 b}$. Reaction of compound $\mathbf{5 b}$ with malonic acid gave phenanthrenyl acrylic acid 6a, which upon treatment with $\mathrm{ClCO}_{2} \mathrm{Et}$ and then with NaN_{3} afforded the corresponding acylazide 6b. When a solution of $\mathbf{6 b}$ in $\mathrm{Ph}_{2} \mathrm{O}$ containing $\mathrm{Bu}_{3} \mathrm{~N}$ was refluxed for 1 h , the naphthoiso-quinoline-1-one 8a was obtained in 78% yield as a result of isomerization with respect to the double bond of $\mathbf{6 b}$, conversion of the resulting acylazide $7 \mathbf{a}$ into the isocyanate 7b, and Bischler-Napieralski cyclization of the latter. Finally, treatment of naphthoisoquinolinone 8a with POCl_{3} and subsequent removal of the chlorine atom of 1 -chloronaphthoisoquinoline 9 c with Zn and AcOH gave the desired compound, $9 \mathbf{9 d}$.

The utility of this sequence was supported by the analogous synthesis of dimethoxylated 2-azachrysene $\mathbf{9 f}$ from o-styrylbenzoic acid $\mathbf{4 b}$, via compounds $5 \mathbf{c}, \mathbf{5 d}, \mathbf{6 c}$, $\mathbf{6 d}, \mathbf{8 b}$ and $9 \mathbf{e}$.

8: a) $\mathrm{R}=\mathrm{H}(78 \%)$
b) $\mathrm{R}=\mathrm{OMe}(84 \%)$

9: a) $\mathrm{R}=\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Z}=\mathrm{CH}$
b) $\mathrm{R}=\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{CH}, \mathrm{Z}=\mathrm{N}^{+}-\mathrm{Me}$
\qquad c) $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}, \mathrm{Z}=\mathrm{CH}, \mathrm{Y}=\mathrm{N}(85 \%)$ d) $\mathrm{R}=\mathrm{X}=\mathrm{H}, \mathrm{Z}=\mathrm{CH}, \mathrm{Y}=\mathrm{N}(90 \%)$
viii \square e) $\mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{Cl}, \mathrm{Z}=\mathrm{COMe}, \mathrm{Y}=\mathrm{N}(94 \%)$
f) $\mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{H}, \mathrm{Z}=\mathrm{COMe}, \mathrm{Y}=\mathrm{N}(95 \%)$

Scheme 1. (i) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (5% molar), $\mathrm{Ph}_{3} \mathrm{P}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$, argon, $80^{\circ} \mathrm{C}, 24$ h. (ii) UV light, $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 3 \mathrm{~h}$. (iii) (a) LiAlH_{4}, THF, rt, 1.5 h ; (b) $\mathrm{MnO}_{2}, \mathrm{CHCl}_{3}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$. (iv) $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$, piperidine, pyr., $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then reflux, 1 h . (v) (a) $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}$, acetone, $0^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (b) $\mathrm{NaN}_{3}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$. (vi) $\mathrm{Bu}_{3} \mathrm{~N}, \mathrm{Ph}_{2} \mathrm{O}$, reflux, 1 h . (vii) POCl_{3}, reflux, 3 h . (viii) $\mathrm{Zn}, \mathrm{AcOH}$, reflux, 2 h .

To sum up, we describe here the first total synthesis of 2-azachrysenes, which includes new general syntheses of 2-styrylbenzoic acids and phenanthrenylbenzoic acids that are simpler and more efficient than previous ones. ${ }^{13,14}$ Optimization of this route is now in progress in order to obtain a panel of 2-azachrysenes for a systematic study of their chemical and biological properties, antineoplastic activity included.

Acknowledgements

We thank the Ministry of Education and Culture (DGES) and the Xunta de Galicia for financial support.

References

1. (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenesis; Cambridge University Press: Cambridge, UK, 1991; (b) Harvey, R. G. In The Handbook of Environmental Chemistry, Volume 3. Part I: PAHs and Related Compounds; Hutzinger, O. (Editor-inChief); Neilson, A. (Volume Ed.); Springer: Berlin, Heidelberg, 1997; Chapter 1, pp. 1-54.
2. Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenesis; Wiley-VCH: New York, 1997.
3. (a) Denisenko, M. F.; Pao, A.; Tang, M.; Pfeifer, G. P. Science 1996, 274, 430; (b) Pfeifer, G. P.; Denissenko, M. F. Environ. Mol. Carcin. 1998, 31, 197; (c) Denissenko, M. F.; Cheng, J. X.; Tang, M.; Pfeifer, G. P. Proc. Natl. Acad. Sci. USA 1997, 94, 3893; (d) Cheng, J. X.; Zheng, Y.; West, M.; Tang, M. Cancer Res. 1998, 58, 2170.
4. Cheng, C. C. In Progress in Medicinal Chemistry; Ellis, G. P.; West, G. B.; Eds. Structural aspects of antineoplastic agents-a new approach. Elsevier Science Publisher, B. V. (Biomedical Division): Amsterdam, 1988; Vol. 25, pp. 35-83.
5. (a) Zee-Cheng, K. Y.; Cheng, C. C. J. Heterocycl. Chem. 1973, 10, 867; (b) Zee-Cheng, K. Y.; Cheng, C. C. J. Med. Chem. 1975, 18, 66; (c) Stermitz, F. R.; Gillespie, L. G.; Amoros, L. G.; Romero, R.; Stermitz, T. A.; Larson, K. A.; Earl, S.; Ogg, J. E. J. Med. Chem. 1975, 18, 708; (d) Huang, A.-X.; Li, Z.-H. Acta Chim. Sin. 1980, 38, 535; (e) Fang, S.-D.; Wang, L.-K.; Hetch, S. M. J. Org. Chem. 1993, 58, 5025; (f) Taira, Z.; Matsumoto, M.; Ishida, S.; Icikawa, T.; Sakiya, Y. Chem. Pharm. Bull. 1994, 42, 1556.
6. (a) Whaley, W. M.; Meadow, M. J. Org. Chem. 1954, 19, 661; (b) Galiazzo, G.; Bortolus, P.; Masetti, F. J. Chem. Soc., Perkin Trans. 2 1975, 1712; (c) Masetti, F.; Bartocci, G.; Mazzucato, U. Gazz. Chim. Ital. 1982, 112, 255; (d) Tanga, M. J.; Almquist, R. G.; Smith, T. H. J. Heterocycl. Chem. 1985, 22, 1597.
7. Chen, H.-Y.; Preston, M. R. Environ. Sci. Technol. 1998, 32, 577.
8. (a) Ziegler, C. B.; Heck, R. F. J. Org. Chem. 1978, 46, 4416; (b) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.
9. Ezquerra, J.; Pedregal, C.; Lamas, C.; Barluenga, J.; Pérez, M.; García-Martín, M. A.; González, J. M. J. Org. Chem. 1996, 61, 5804.
10. (a) Rubin, M. B.; Welner, S. J. Org. Chem. 1980, 45, 1847; (b) Koszyk, F. J.; Lenz, G. R. J. Chem. Soc., Perkin Trans. 1 1984, 1273.
11. (a) All new compounds gave satisfactory analytical and spectroscopic data. Selected physical and spectroscopic data follow. Compound 4a. ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$): $3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 6.92(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$, $-\mathrm{CH}=\mathrm{CH}-), 7.17-7.35(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Ar}-\mathrm{H}), 7.47-7.51$ (m, $2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.86$ (dd, $J=7.8$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 8.02 (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$, - $\mathrm{CH}=\mathrm{CH}-$). MS ($\mathrm{m} / \mathrm{z}, \%$) : 238 ($\mathrm{M}^{+}, 79$), 178 (100). Compound 5a. ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$): $4.04(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{CO}_{2} \mathrm{CH}_{3}$), $7.64-7.70(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}), 7.87(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.93 (d, J=7.4 Hz, 1H, Ar-H), 8.22 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 8.78 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.92$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H). MS ($m / z, \%$): 236 ($\mathrm{M}^{+}, 100$). Compound 4b. Mp $86-88^{\circ} \mathrm{C}(\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}$): 3.87 (s, $3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, 6.89 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.22-7.36(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.51-7.54$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}$), 8.07 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{C} H=\mathrm{CH}-)$. MS ($m / z, \%$): 298 (M^{+}, 100). Compound 5b. Mp 109$111^{\circ} \mathrm{C}(\mathrm{AcOEt}) .{ }^{1} \mathrm{H}$ NMR ($\left.\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 3.97(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $7.60-7.65(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.69(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.84-7.88 (m, 1H, Ar-H), 7.92 (s, 1H, Ar-H), 8.65 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $9.62-9.66$ (m, 1H, Ar-H). MS ($m / z, \%$): $296\left(\mathrm{M}^{+}, 100\right)$. Compound 9f. Mp $152-154^{\circ} \mathrm{C}$ $(\mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 4.04$ (s, 3 H ,
$\left.-\mathrm{OCH}_{3}\right), 4.25\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H})$, 7.98-8.01 (m, 2H, $2 \times \mathrm{Ar}-\mathrm{H}$), 8.45-8.46 (m, 1H, Ar-H), 8.63 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.77$ (bs, 1H, Ar-H), 9.69 (bs, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 9.77 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$. MS (m / z, \%): 289 ($\mathrm{M}^{+}, 2$), 58 (100).
12. Karmakar, A. C.; Kar, G. K.; Ray, J. K. J. Chem. Soc., Perkin Trans. 1 1991, 1997.
13. For previous syntheses of o-styrylbenzoic acids, see Ref. 1. See also: (a) Kim, B. M.; Park, J. K. Bull. Korean Chem. Soc. 1999, 20, 744; (b) Noda, M. Chem. Pharm. Bull. 1998, 46, 1157; (c) Zehnter, R.; Gerlach, H. Tetrahedron: Asymmetry 1995, 6, 2779; (d) Yoshikawa, M.; Harada, E.; Yagi, N.; Okuno, Y.; Muraoka, O.; Aoyama, H.; Murakami, N. Chem. Pharm. Bull. 1994, 42, 721; (e) Mal, D.; Majumdar, G.; Pal, R. J. Chem. Soc., Perkin Trans. 1 1994, 1115; (f) Bowden, K.; Ghadir, K. J. Chem. Soc., Perkin Trans. 2 1990, 1333; (g) Lazer, E. S.; Wong, H. C.; Wegner, C. D.; Graham, A. G.; Farina, P. R. J. Med. Chem. 1990, 33, 1892; (h) Eicher, T.; Tiefensee, K.; Pick, R. Synthesis 1988, 525; (i) Bellinger, G. C. A.; Campbell, W. E.; Giles, R. G. F.; Tobias, J. D. J. Chem. Soc., Perkin Trans. 1 1982, 2819; (j) Meyers, A. I.; Gabel, R.; Mihelich, E. D. J. Org. Chem. 1978, 43, 1372.
14. (a) Citterio, A.; Pesce, L.; Sebastiano, R.; Santi, R. Synthesis 1990, 142; (b) Caluwe, P.; Pepper, T. J. Org. Chem. 1988, 53, 1786; (c) Rubin, M. B.; Welner, S. J. Org. Chem. 1980, 45, 1847.

[^0]: * Corresponding author. Tel.: +34-981-563100, extension 14242; fax: +34-981-591014; e-mail: qorjec@usc.es
 \dagger Preparation of an o-styrylbenzoic acid by Heck coupling reaction of iodobenzene to o-vinylbenzoic acid has recently been carried out by Kim, B. M.; Park, J. K. Bull. Korean Chem. Soc. 1999, 20, 744. As far as we know, neither nor any other o-styrylbenzoic acids have been obtained by similar procedures: see Refs. 12 and 13.

